Reference: Kim I, et al. (2007) Bayesian methods for predicting interacting protein pairs using domain information. Biometrics 63(3):824-33

Reference Help

Abstract


Protein-protein interactions (PPIs) play important roles in most fundamental cellular processes including cell cycle, metabolism, and cell proliferation. Therefore, the development of effective statistical approaches to predicting protein interactions based on recently available large-scale experimental data is very important. Because protein domains are the functional units of proteins and PPIs are mostly achieved through domain-domain interactions (DDIs), the modeling and analysis of protein interactions at the domain level may be more informative and insightful. However, due to the large number of domains, the number of parameters to be estimated is very large, yet the amount of information for statistical inference is quite limited. In this article we propose a full Bayesian method and a semi-Bayesian method for simultaneously estimating DDI probabilities, the false positive rate, and the false negative rate of high-throughput data through integrating data from several organisms. We also propose a model to associate protein interaction probabilities with domain interaction probabilities that reflects the number of domains in each protein. Our Bayesian methods are compared with the likelihood-based approach (Deng et al., 2002, Genome Research12, 1504-1508; Liu, Liu, and Zhao, 2005, Bioinformatics21, 3279-3285) developed using the expectation maximization algorithm. We show that the full Bayesian method has the smallest mean square error through both simulations and theoretical justification under a special scenario. The large-scale PPI data obtained from high-throughput yeast two-hybrid experiments are used to demonstrate the advantages of the Bayesian approaches.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Kim I, Liu Y, Zhao H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference