Reference: Kow YW, et al. (2007) Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci U S A 104(27):11352-7

Reference Help

Abstract


Transformation of both prokaryotes and eukaryotes with single-stranded oligonucleotides can transfer sequence information from the oligonucleotide to the chromosome. We have studied this process using oligonucleotides that correct a -1 frameshift mutation in the LYS2 gene of Saccharomyces cerevisiae. We demonstrate that transformation by oligonucleotides occurs preferentially on the lagging strand of replication and is strongly inhibited by the mismatch-repair system. These results are consistent with a mechanism in which oligonucleotides anneal to single-stranded regions of DNA at a replication fork and serve as primers for DNA synthesis. Because the mispairs the primers create are efficiently removed by the mismatch-repair system, single-stranded oligonucleotides can be used to probe mismatch-repair function in a chromosomal context. Removal of mispairs created by annealing of the single-stranded oligonucleotides to the chromosomal DNA is as expected, with 7-nt loops being recognized solely by MutS beta and 1-nt loops being recognized by both MutS alpha and MutS beta. We also find evidence for Mlh1-independent repair of 7-nt, but not 1-nt, loops. Unexpectedly, we find a strand asymmetry of mismatch-repair function; transformation is blocked more efficiently by MutS alpha on the lagging strand of replication, whereas MutS beta does not show a significant strand bias. These results suggest an inherent strand-related difference in how the yeast MutS alpha and MutS beta complexes access and/or repair mismatches that arise in the context of DNA replication.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence