Reference: Papadopulos A, et al. (2007) Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles. J Biol Chem 282(21):15559-68

Reference Help

Abstract


Transbilayer movement of phospholipids in biological membranes is mediated by energy-dependent and energy-independent flippases. Available methods for detection of flippase mediated transversal flip-flop are essentially based on spin-labeled or fluorescent lipid analogues. Here we demonstrate that shape change of giant unilamellar vesicles (GUVs) can be used as a new tool to study the occurrence and time scale of flippase-mediated transbilayer movement of unlabeled phospholipids. Insertion of lipids into the external leaflet created an area difference between the two leaflets that caused the formation of a bud-like structure. Under conditions of negligible flip-flop, the bud was stable. Upon reconstitution of the energy-independent flippase activity of the yeast endoplasmic reticulum into GUVs, the initial bud formation was reversible, and the shapes were recovered. This can be ascribed to a rapid flip-flop leading to relaxation of the monolayer area difference. Theoretical analysis of kinetics of shape changes provides self-consistent determination of the flip-flop rate and further kinetic parameters. Based on that analysis, the half-time of phospholipid flip-flop in the presence of endoplasmic reticulum proteins was found to be on the order of few minutes. In contrast, GUVs reconstituted with influenza virus protein formed stable buds. The results argue for the presence of specific membrane proteins mediating rapid flip-flop.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Papadopulos A, Vehring S, López-Montero I, Kutschenko L, Stöckl M, Devaux PF, Kozlov M, Pomorski T, Herrmann A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference