Reference: Shimoda C, et al. (2006) Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase delta as an effective mutator in Saccharomyces cerevisiae. Genes Genet Syst 81(6):391-7

Reference Help

Abstract


Eukaryotic DNA polymerases delta and epsilon, both of which are required for chromosomal DNA replication, contain proofreading 3'-->5'exonuclease activity. DNA polymerases lacking proofreading activity act as strong mutators. Here we report isolation of thermotolerant mutants by using a proofreading-deficient DNA polymerase delta variant encoded by pol3-01 in the yeast Saccharomyces cerevisiae. The parental pol3-01 strain grew only poorly at temperatures higher than 38 degrees C. By stepwise elevation of the incubation temperature, thermotolerant mutants that could proliferate at 40 degrees C were successfully obtained; however, no such mutants were isolated with the isogenic POL3 strain. The recessive hot1-1 mutation was defined by genetic analysis of a weak thermotolerant mutant. Strong thermotolerance to 40 degrees C was attained by multiple mutations, at least one of which was recessive. These results indicate that a proofreading-deficient DNA delta polymerase variant is an effective mutator for obtaining yeast mutants that have gained useful characteristics, such as the ability to proliferate in harsh environments.

Reference Type
Journal Article
Authors
Shimoda C, Itadani A, Sugino A, Furusawa M
Primary Lit For
Additional Lit For
Review For