Reference: Kito K, et al. (2007) A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res 6(2):792-800

Reference Help

Abstract


Quantitative description of protein interactions is crucial to understand and model molecular systems regulating various cellular activities. Here, we developed a novel peptide-concatenated standard (PCS) strategy for accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. In this strategy, tryptic peptides suitable for quantification are selected with their natural flanking sequences from each component of multiprotein complex and concatenated into a single synthetic protein called PCS. The concatenation guarantees equimolarity among the peptides added to the sample to obviate the need for preparation of accurately known amounts of individual peptides. The flanking sequences would equalize the excision efficiency of each peptide between the PCS and the target protein to improve the accuracy of quantification. To validate this strategy, we quantified the budding yeast eIF2Bgamma, the gamma subunit of eukaryotic initiation factor 2B, using a PCS composed of tryptic peptides from eIF2Bgamma with their flanking sequences. An identical sample-to-standard signal ratio was obtained within 5% measured error for these peptides, including the one prone to incomplete digestion, thereby proving the principle of PCS strategy. We applied the strategy to reveal the stoichiometry of the eIF2B-eIF2 complex using a PCS covering the 5 eIF2B and 3 eIF2 components. While the complex contained equimolar amounts of the eIF2B subunits, the ratio of each eIF2 subunit to eIF2B was 30-40%. The PCS strategy would provide a versatile method to quantitatively analyze compositional alteration of multiprotein complexes or dynamics of protein-protein interactions in response to various stimuli.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kito K, Ota K, Fujita T, Ito T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference