Reference: Watanabe S, et al. (2007) Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Biopolymers 88(2):131-40

Reference Help

Abstract


The importance of high-throughput analyses of protein abundances and functions is interestingly increasing in genomic/proteomic studies. In such postgenome sequencing era, a protein-detecting chip, in which a large number of molecules specifically capturing target proteins (capturing agents) such as antibodies, recombinant proteins, and small molecules are arrayed onto solid, wet, or semi-wet substrates, enables comprehensive analysis of proteomes by a single experiment. However, whole proteomes are generally complicated for comprehensive analyses so that alternative approaches to subproteome analysis categorized by protein functions and binding properties (focused proteome) would be effective. Approaching the goal of development of designed peptide chip for protein analysis, diversity increases in peptide structures and validation of target proteins are needed. We herein describe design and synthesis of nucleobase amino acid (NBA)-containing peptides, selection of nucleic acid-related proteins derived from S. cerevisiae, and detection of interactions between NBA-containing peptides and T7 phages displaying proteins by both enzyme-linked immunosorbent assays (ELISA) and label-free anomalous reflection of gold (AR) measurements. Twenty-eight phage clones were obtained by the phage-display method and sequenced. Ten of 28 clones were expected to be nucleic acid-related proteins including initiation factor, TYB protein, ribosomal proteins, elongation factor, ATP synthase subunit, GTP-binding protein, and ribonuclease. Other phage clones encoded several classes of enzymes such as reductase, oxidase, aldolase, metalloprotease, and hexokinase. Both ELISA and AR measurements suggested that the methodology of in vitro selection for recognition of the NBA-containing peptide presented in this study was successfully established. Such a combination of NBA and phage display technologies would be potential to efficiently confirm valuable target proteins binding specifically to capturing agents, to be arrayed onto solid surfaces to develop the designed peptide chip.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Watanabe S, Tomizaki KY, Takahashi T, Usui K, Kajikawa K, Mihara H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference