Reference: Makise M, et al. (2007) Mechanism for the degradation of origin recognition complex containing Orc5p with a defective Walker A motif and its suppression by over-production of Orc4p in yeast cells. Biochem J 402(2):397-403

Reference Help

Abstract


Orc5p is one of six subunits constituting the ORC (origin recognition complex), a possible initiator of chromosomal DNA replication in eukaryotes. Orc5p contains a Walker A motif. We recently reported that a strain of Saccharomyces cerevisiae having a mutation in Orc5p's Walker A motif (orc5-A), showed cell-cycle arrest at G2/M and degradation of ORC at high temperatures (37 degrees C). Over-production of Orc4p, another subunit of ORC, specifically suppressed these phenotypes [Takahashi, Yamaguchi, Yamairi, Makise, Takenaka, Tsuchiya and Mizushima (2004) J. Biol. Chem. 279, 8469-8477]. In the present study, we examined the mechanisms of ORC degradation and of its suppression by Orc4p over-production. In orc5-A, at high temperatures, ORC is degraded by proteasomes; either addition of a proteasome inhibitor, or introduction of a mutation of either tan1-1 or nob1-4 that inhibits proteasomes, prevented ORC degradation. Introduction of the tan1-1 mutation restored cell cycle progression, suggesting that the defect was due to ORC degradation by proteasomes. Yeast two-hybrid and co-immunoprecipitation analyses suggested that Orc5p interacts preferentially with Orc4p and that the orc5-A mutation diminishes this interaction. We suggest that this interaction is mediated by the C-terminal region of Orc4p, and the N-terminal region of Orc5p. Based on these observations, we consider that ATP binding to Orc5p is required for efficient interaction with Orc4p and that, in orc5-A, loss of this interaction at higher temperatures allows proteasomes to degrade ORC, causing growth defects. This model could also explain why over-production of Orc4p suppresses the orc5-A strain's phenotype.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Makise M, Takahashi N, Matsuda K, Yamairi F, Suzuki K, Tsuchiya T, Mizushima T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions 5 entries for 3 genes

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

InteractorInteractorAssayAnnotationActionModification
ORC2ORC5Two-hybridmanually curatedHit-BaitNo Modification
ORC5ORC4Two-hybridmanually curatedBait-HitNo Modification
ORC5ORC5Two-hybridmanually curatedHit-BaitNo Modification
ORC5ORC4Affinity Capture-Westernmanually curatedHit-BaitNo Modification
ORC5ORC4Two-hybridmanually curatedHit-BaitNo Modification
Showing 1 to 5 of 5 entries