Reference: Yang Z (2006) On the varied pattern of evolution of 2 fungal genomes: a critique of Hughes and Friedman. Mol Biol Evol 23(12):2279-82

Reference Help

Abstract


A number of statistical tests have been proposed to detect positive Darwinian selection affecting a few amino acid sites in a protein, exemplified by an excess of nonsynonymous nucleotide substitutions. These tests are often more powerful than pairwise sequence comparison, which averages synonymous (d(S)) and nonsynonymous (d(N)) rates over the whole gene. In a recent study, however, Hughes AL and Friedman R (2005. Variation in the pattern of synonymous and nonsynonymous difference between two fungal genomes. Mol Bio Evol. 22: 1320-1324) argue that d(S) and d(N) are expected to fluctuate along the sequence by chance and that an excess of nonsynonymous differences in individual codons is no evidence for positive selection. The authors compared codons in protein-coding genes from the genomes of 2 yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus. They calculated the proportions of synonymous and nonsynonymous differences per site (p(S) and p(N)) in every codon and discovered that p(N) is often greater than p(S) and that among some codons p(S) and p(N) are negatively correlated. The authors argued that these results invalidate previous tests of codons under positive selection. Here I discuss several errors of statistics in the analysis of Hughes and Friedman, including confusion of statistics with parameters, arbitrary data filtering, and derivation of hypotheses from data. I also apply likelihood ratio tests of positive selection to the yeast data and illustrate empirically that Hughes and Friedman's criticisms on such tests are not valid.

Reference Type
Comment | Evaluation Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Yang Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference