Reference: Finking R, et al. (2002) Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J Biol Chem 277(52):50293-302

Reference Help

Abstract


Phosphopantetheinyl-dependent carrier proteins are part of fatty-acid synthases (primary metabolism), polyketide synthases, and non-ribosomal peptide synthetases (secondary metabolism). For these proteins to become functionally active, they need to be primed with the 4'-phosphopantetheine moiety of coenzyme A by a dedicated phosphopantetheine transferase (PPTase). Most organisms that employ more than one phosphopantetheinyl-dependent pathway also have more than one PPTase. Typically, one of these PPTases is optimized for the modification of carrier proteins of primary metabolism and rejects those of secondary metabolism (AcpS-type PPTases), whereas the other, Sfp-type PPTase, efficiently modifies carrier proteins involved in secondary metabolism. We present here a new type of PPTase, the carrier protein synthase of Pseudomonas aeruginosa, an organism that harbors merely one PPTase, namely PcpS. Gene deletion experiments clearly show that PcpS is essential for growth of P. aeruginosa, and biochemical data indicate its association with both fatty acid synthesis and siderophore metabolism. At first sight, PcpS is a PPTase of the monomeric Sfp-type and was consequently expected to have catalytic properties typical for this type of enzyme. However, in vitro characterization of PcpS with natural protein partners and non-cognate substrates revealed that its catalytic properties differ significantly from those of Sfp. Thus, the situation in P. aeruginosa is not simply the result of the loss of an AcpS-type PPTase. PcpS exhibits high catalytic efficiency with the carrier protein of fatty acid synthesis and shows a reduced although significant conversion rate of the carrier proteins of non-ribosomal peptide synthetases from their apo to holo form. This association with enzymes of primary and secondary metabolism indicates that PcpS belongs to a new sub-class of PPTases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Finking R, Solsbacher J, Konz D, Schobert M, Schafer A, Jahn D, Marahiel MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference