Reference: Zappacosta F, et al. (2006) A quantitative results-driven approach to analyzing multisite protein phosphorylation: the phosphate-dependent phosphorylation profile of the transcription factor Pho4. Mol Cell Proteomics 5(11):2019-30

Reference Help

Abstract


Multisite protein phosphorylation appears to be quite common. Nevertheless our understanding of how multiple phosphorylation events regulate the function of a protein is limited in many cases. The ability to measure temporal changes in the site-specific phosphorylation profile of a protein in response to a given stimulus or cellular activity would provide an immediate indication of the functional significance of any phosphorylation site to a given process. Here we describe a mass spectrometry-based method to identify functionally relevant phosphorylation sites on a protein. It combines stable isotope labeling with a highly selective mass spectrometry analysis to detect and quantitate phosphorylation sites in response to a cellular signal. This approach requires no a priori knowledge of the phosphorylation state of the protein, does not require purification of phosphopeptides, and reliably detects substoichiometric levels of phosphorylation. Following a review of the quantitative results, only those phosphorylation sites that show a change in relative abundance are selected for identification and further study. We used this results-driven approach to study phosphorylation of the budding yeast transcription factor Pho4 in response to phosphate starvation. Phosphorylation of Pho4 on five cyclin-dependent kinase (Cdk) consensus sites has been shown to regulate the transcriptional activity of Pho4 in response to changes in environmental phosphate levels. Here we show that in phosphate-rich medium Pho4 is phosphorylated on at least 15 distinct sites including the five Cdk sites described previously. In excellent agreement with the known mechanism for regulation of Pho4 we found that phosphorylation at all five of the Cdk sites was repressed in phosphate-depleted medium. In addition to these five sites, we identified four novel phosphorylation sites that were also responsive to changes in phosphate availability. Selecting a limited number of Pho4 phosphorylation sites, we performed a more detailed kinetic analysis using an isotope-free strategy. We used LC-MS with selected reaction monitoring to greatly improve the accuracy, sensitivity, and dynamic range of the subsequent experiments. A detailed analysis of the cell-based phosphorylation at the selected Pho4 sites confirmed an apparent site preference for the Pho80-Pho85 cyclin-cyclin-dependent kinase complex.

Reference Type
Journal Article
Authors
Zappacosta F, Collingwood TS, Huddleston MJ, Annan RS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference