Reference: Gruic-Sovulj I, et al. (2006) Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. J Mol Biol 361(1):128-39

Reference Help

Abstract


Seryl-tRNA synthetases (SerRSs) from methanogenic archaea possess distinct evolutionary origin and show minimal sequence similarity with counterparts from bacteria, eukaryotes and other archaea. Here we show that SerRS from yeast Saccharomyces cerevisiae and archaeon Methanococcus maripaludis (ScSerRS and MmSerRS, respectively) display significantly different ability to serylate heterologous tRNA(Ser). Recognition in yeast was shown to be more stringent than in archaeon. While cross-aminoacylation of M. maripaludis tRNA(Ser) (MmtRNA(Ser)) by yeast SerRS barely occurs, yeast tRNA(Ser) (SctRNA(Ser)) was shown to be a good substrate for heterologous MmSerRS. To investigate the contribution of different tRNA regions for the recognition by yeast and archaeal SerRS, chimeric tRNAs bearing separated domains of SctRNA(Ser) in MmtRNA(Ser) framework were produced by in vitro transcription and subjected to kinetic and gel mobility shift analysis with both enzymes. Generally, the recognition in M. maripaludis seems to be relatively relaxed toward tertiary elements of tRNA(Ser) structure and relies on the direct recognition of identity nucleotides. On the other hand, expression of tRNA(Ser) identity elements in yeast seems to be more sensitive toward surrounding sequence context. In both systems variable arm of tRNA was recognized as a major identity region with a strong influence on SerRS:tRNA binding. Acceptor domain of SctRNA(Ser) was also shown to be important for serylation in yeast. We propose that cognate interactions between N-terminal domain of yeast SerRS and variable region of SctRNA(Ser) place the acceptor stem into the enzyme's active site and lead to increased affinity toward serine and efficient serylation of tRNA. The same effect was not observed in M. maripaludis. Unlike its yeast counterpart, MmSerRS forms only one type of covalent complex with MmtRNA(Ser), regardless of the tRNA/SerRS molar ratio. Stoichiometry of the complex, one tRNA per dimeric SerRS, was revealed by mass spectrometry. Our studies indicate that different SerRS:tRNA recognition mode is utilized by these two systems.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Gruic-Sovulj I, Jaric J, Dulic M, Cindric M, Weygand-Durasevic I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference