Reference: Nes WR, et al. (1978) The functional importance of structural features of ergosterol in yeast. J Biol Chem 253(17):6218-25

Reference Help

Abstract


As an approach to the study of the relationship between the structure of sterols and their capacity to function in the lipid leaflet of membranes, various sterols were examined for their ability to support the growth of anaerobic Saccharomyces cerevisiae. A marked dependence on precise structural features was observed in growth-response and morphology. Of the chemical groups which distinguish ergosterol, the main sterol of S. cerevisiae, the hydroxyl group at C-3 was obligatory, and the other groups were found to be of the following relative importance: 24beta-methyl-delta22-grouping greater than 24beta-methyl group greater than delta5,7-diene system = delta5-bond approximately or equal to no double bond. Methyl groups at C-4 and C-14 were inconsistent with activity. Consequently, the data strongly suggest that the normal biosynthetic processes removal of methyl groups from the nucleus and introduction of one in the side chain are of functional significance. A double bond between C-17 and C-20 joining the steroidal side chain to the nucleus had no deleterious effect on the growth process but only if C-22 was trans-oriented to C-13. In the cis-case no growth at all proceeded. This means the natural sterol probably acts functionally in the form of its preferred conformer in which C-22 is to the right ("right-handed") in the usual view. Since the placing of a substituent (OH or CH3) in the molecule at C-20 in such a way that it appears on the front side in the right-handed conformer completely destroyed activity, the sterol apparently presents its front face to protein or phospholipid when complexing occurs.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Nes WR, Sekula BC, Nes WD, Adler JH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference