Reference: Kulp DC and Jagalur M (2006) Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7:125

Reference Help

Abstract


Background: Correlations between polymorphic markers and observed phenotypes provide the basis for mapping traits in quantitative genetics. When the phenotype is gene expression, then loci involved in regulatory control can theoretically be implicated. Recent efforts to construct gene regulatory networks from genotype and gene expression data have shown that biologically relevant networks can be achieved from an integrative approach. In this paper, we consider the problem of identifying individual pairs of genes in a direct or indirect, causal, trans-acting relationship.

Results: Inspired by epistatic models of multi-locus quantitative trait (QTL) mapping, we propose a unified model of expression and genotype to identify quantitative trait genes (QTG) by extending the conventional linear model to include both genotype and expression of regulator genes and their interactions. The model provides mapping of specific genes in contrast to standard linkage approaches that implicate large QTL intervals typically containing tens of genes. In simulations, we found that the method can often detect weak trans-acting regulators amid the background noise of thousands of traits and is robust to transcription models containing multiple regulator genes. We reanalyze several pleiotropic loci derived from a large set of yeast matings and identify a likely alternative regulator not previously published. However, we also found that many regulators can not be so easily mapped due to the presence of cis-acting QTLs on the regulators, which induce close linkage among small neighborhoods of genes. QTG mapped regulator-target pairs linked to ARN1 were combined to form a regulatory module, which we observed to be highly enriched in iron homeostasis related genes and contained several causally directed links that had not been identified in other automatic reconstructions of that regulatory module. Finally, we also confirm the surprising, previously published results that regulators controlling gene expression are not enriched for transcription factors, but we do show that our more precise mapping model reveals functional enrichment for several other biological processes related to the regulation of the cell.

Conclusion: By incorporating interacting expression and genotype, our QTG mapping method can identify specific regulator genes in contrast to standard QTL interval mapping. We have shown that the method can recover biologically significant regulator-target pairs and the approach leads to a general framework for inducing a regulatory module network topology of directed and undirected edges that can be used to identify leads in pathway analysis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kulp DC, Jagalur M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference