Reference: Tanaka T, et al. (2000) Long-chain alkyl ester of AMP acts as an antagonist of glucose-induced signal transduction that mediates activation of plasma membrane proton pump in Saccharomyces cerevisiae. Microbiology (Reading) 146 ( Pt 2):377-384

Reference Help

Abstract


One of the long-chain alkyl esters of AMP, adenosine 5'-hexadecylphosphate (AMPC16), exhibited a cytotoxic growth inhibitory effect on cells of various yeast strains. The growth inhibitory effect of AMPC16 on Saccharomyces cerevisiae cells was observed only in medium containing Mg2+, which accelerated cellular uptake of the nucleotide analogue. In the presence of Mg2+, AMPC16 completely inhibited glucose-induced extracellular acidification by the intact cells and also interfered with activation of the plasma membrane ATPase, but did not directly inhibit the ATPase activity itself. AMPC16 treatment prevented cells from increasing their intracellular sn-1,2-diacylglycerol (DAG) level in response to glucose, whereas the inhibition of proton extrusion by the cells could be largely reversed by the coaddition of a membrane-permeable DAG analogue. The DAG analogue, a physiological activator of protein kinase C (PKC), was not protective against the inhibition of glucose-induced proton extrusion by staurosporine, which is capable of directly interfering with the action of PKC. These results implied that AMPC16 caused a Mg(2+)-dependent cytotoxic effect on Sac. cerevisiae cells by interfering with a phosphatidylinositol type of signal that mediates activation of the plasma membrane proton pump.

Reference Type
Journal Article
Authors
Tanaka T, Nakayama K, Machida K, Taniguchi M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference