Reference: Jenks MH and Reines D (2005) Dissection of the molecular basis of mycophenolate resistance in Saccharomyces cerevisiae. Yeast 22(15):1181-90

Reference Help

Abstract


IMP dehydrogenase (IMPDH) is required for the de novo synthesis of guanine nucleotides. While most invertebrates have one IMPDH gene and humans and mice have two, Saccharomyces cerevisiae contains four, IMD1-IMD4. Although Imd2 is 92% identical to Imd3, it is the only S. cerevisiae IMPDH that is resistant to mycophenolic acid in vitro and is the only one of the four that supports drug-resistant growth. Thus, S. cerevisiae is unique in possessing two classes of IMPDH enzymes with very different drug susceptibilities. The mycophenolate-sensitive growth phenotype has become an important genetic tool in yeast, particularly as an indicator for mutations in the transcription elongation machinery. Here we exploit the distinct drug sensitivity of these two closely related IMPDH genes to identify the naturally occurring determinants of drug-resistant growth. Using chimeric IMD2-IMD3 genes in a strain null for IMD genes, we show that one of the 39 amino acid differences between these enzymes is responsible for much of its drug resistance. The IMP dehydrogenase activity of purified chimeric Imd3 containing the Imd2 residue at position 253 was eight-fold more resistant than native Imd3. The reciprocal change in Imd2 resulted in a 23-fold loss of resistance. Hence, acquisition of a hydroxyl side-chain at 523 is sufficient to confer a drug-resistant phenotype upon this organism. We identified the major determinant of the functional distinction between IMD genes in this yeast and suggest that selective pressure on this species forced divergence of one member of this gene family toward drug resistance.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Jenks MH, Reines D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference