Reference: Garza-Ramos G, et al. (1996) Species-specific inhibition of homologous enzymes by modification of nonconserved amino acids residues. The cysteine residues of triosephosphate isomerase. Eur J Biochem 241(1):114-20

Reference Help

Abstract


The possibility of using non-conserved amino acid residues to produce selective inhibition of homologous enzymes from different species has been further explored with triosephosphate isomerase. S-phenyl-p-toluenethiosulfonate (MePhSO2-SPh), which produces phenyl disulfides with accessible Cys residues, inhibits the activity of rabbit triosephosphate isomerase. The inhibition is due to derivatization of one of the five Cys residues of rabbit triosephosphate isomerase. The effect of MePhSO2-SPh on triosephosphate isomerase from Saccharomyces cerevisiae, Escherichia coli, chicken and Schizosaccharomyces pombe was also determined. MePhSO2-SPh did not affect the activity of triosephosphate isomerase from S. cerevisiae and E. coli but it inhibited triosephosphate isomerase from chicken and S. pombe. From an analysis of the Cys content of the various triosephosphate isomerases, it was evident that amongst the ones studied only those that have a Cys in position 217 (or in an equivalent position) were sensitive to MePhSO2-SPh. Methyl metanethiosulfonate (MeSO2-SMe), which produces methyl disulfides, had no effect on triosephosphate isomerases that lack Cys217 (S. cerevisiae and E. coli). In triosephosphate isomerases that have Cys217, MeSO2-SMe inhibited by 40-50% the activity of that from S. pombe, 20-25% that from rabbit but had no effect on the chicken enzyme. In the three latter triosephosphate isomerases, MeSO2-SMe protected against the strong inhibiting action of MePhSO2-SPh. The latter observations suggest that MeSO2-SMe and MePhSO2-SPh derivatize the same Cys and that significant inhibition of activity requires perturbation by the relatively large phenyl group. The intrinsic fluorescence of rabbit triosephosphate isomerase that had been derivatized to a phenyl disulfide was almost identical to that of the native enzyme. Thus, modification of Cys217 did not produce gross structural alterations, albeit it brought about important kinetic alterations, i.e. a nearly fivefold increase in the K(m) for glyceraldehyde 3-phosphate and a 65% decrease in Vmax. The effect of derivatizating Cys217 differs markedly from that produced by derivatization of Cys14 (another non-conserved cysteine). The differences may be explained from their position in the three-dimensional structure of the enzyme.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Garza-Ramos G, Pérez-Montfort R, Rojo-Domínguez A, de Gómez-Puyou MT, Gómez-Puyou A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference