Reference: McKane M, et al. (2005) A mammalian actin substitution in yeast actin (H372R) causes a suppressible mitochondria/vacuole phenotype. J Biol Chem 280(43):36494-501

Reference Help

Abstract


To determine the reason for the inviability of Saccharomyces cerevisiae with skeletal muscle actin, we introduced into yeast actin the first variant muscle residue from the C-terminal end, H372R. Arg is also found at this position in non-yeast nonmuscle actins. The substitution caused retarded growth on glucose and an inability to use glycerol as a sole carbon source. The mitochondria were clumped and had lost their DNA, the vacuole appeared hypervesiculated, and the actin cytoskeleton became somewhat depolarized. Introduction of the second muscle actin-specific substitution, S365A, rescued these defects. Suppression was also achieved by introducing the four acidic N-terminal residues of muscle actin in place of the two found in yeast actin. The H372R substitution results in an increase in polymerization-dependent fluorescence of Cys-374 pyrene-labeled actin. H372R actin polymerizes slightly faster than wild-type (WT) actin. Yeast actin-related proteins 2 and 3 (Arp2/3) accelerates the polymerization of H372R actin to a much greater extent than WT actin. The two suppressors did not affect the rate of H372R actin polymerization in the absence of an Arp2/3 complex. In contrast, the S365A substitution dampened the rate of Arp2/3 complex-stimulated H372R actin polymerization, and the addition of the four acidic N-terminal residues caused this rate to decrease below that observed with WT actin in the presence of Arp2/3. Structural analysis of the mutations suggests the presence of stringent steric and ionic requirements for the bottom of actin subdomain 1 and also suggests that there is allosteric communication through subdomain 1 within the actin monomer between the N and C termini.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
McKane M, Wen KK, Boldogh IR, Ramcharan S, Pon LA, Rubenstein PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference