Reference: Avendaño A, et al. (2005) Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Mol Microbiol 57(1):291-305

Reference Help

Abstract


It is accepted that Saccharomyces cerevisiae genome arose from complete duplication of eight ancestral chromosomes; functionally normal ploidy was recovered because of the massive loss of 90% of duplicated genes. There is evidence that indicates that part of this selective conservation of gene pairs is compelling to yeast facultative metabolism. As an example, the duplicated NADP-glutamate dehydrogenase pathway has been maintained because of the differential expression of the paralogous GDH1 and GDH3 genes, and the biochemical specialization of the enzymes they encode. The present work has been aimed to the understanding of the regulatory mechanisms that modulate GDH3 transcriptional activation. Our results show that GDH3 expression is repressed in glucose-grown cultures, as opposed to what has been observed for GDH1, and induced under respiratory conditions, or under stationary phase. Although GDH3 pertains to the nitrogen metabolic network, and its expression is Gln3p-regulated, complete derepression is ultimately determined by the carbon source through the action of the SAGA and SWI/SNF chromatin remodelling complexes. GDH3 carbon-mediated regulation is over-imposed to that exerted by the nitrogen source, highlighting the fact that operation of facultative metabolism requires strict control of enzymes, like Gdh3p, involved in biosynthetic pathways that use tricarboxylic acid cycle intermediates.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Avendaño A, Riego L, DeLuna A, Aranda C, Romero G, Ishida C, Vázquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference