Reference: Kato T, et al. (2005) A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res 65(13):5638-46

Reference Help

Abstract


An increased level of dihydrouridine in tRNA(Phe) was found in human malignant tissues nearly three decades ago, but its biological significance in carcinogenesis has remained unclear. Through analysis of genome-wide gene-expression profiles among non-small cell lung carcinomas (NSCLC), we identified overexpression of a novel human gene, termed hDUS2, encoding a protein that shared structural features with tRNA-dihydrouridine synthases (DUS). The deduced 493-amino-acid sequence showed 39% homology to the dihydrouridine synthase 2 enzyme (Dus2) of Saccharomyces cerevisiae and contained a conserved double-strand RNA-binding motif (DSRM). We found that hDUS2 protein had tRNA-DUS activity and that it physically interacted with EPRS, a glutamyl-prolyl tRNA synthetase, and was likely to enhance translational efficiencies. A small interfering RNA against hDUS2 transfected into NSCLC cells suppressed expression of the gene, reduced the amount of dihydrouridine in tRNA molecules, and suppressed growth. Immunohistochemical analysis showed significant association between higher levels of hDUS2 in tumors and poorer prognosis of lung cancer patients. Our data imply that up-regulation of hDUS2 is a relatively common feature of pulmonary carcinogenesis and that selective suppression of hDUS2 enzyme activity and/or inhibition of formation of the hDUS2-tRNA synthetase complex could be a promising therapeutic strategy for treatment of many lung cancers.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference