Reference: Del Aguila EM, et al. (2005) Comparing protocols for preparation of DNA-free total yeast RNA suitable for RT-PCR. BMC Mol Biol 6:9

Reference Help

Abstract


Background: Preparation of RNA free from DNA is a critical step before performing RT-PCR assay. Total RNA isolated from several sources, including those obtained from Saccharomyces cerevisiae, using routine methodologies are frequently contaminated with DNA, which can give rise to amplification products that mimic the amplicons expected from the RNA target.

Results: We investigated the efficiency of two DNase I based protocols for eliminating DNA contaminations from RNA samples obtained from yeast cells. Both procedures are very efficient in eliminating DNA contamination from RNA samples and entail three main steps, which involve treating of RNA samples with DNase I, inhibition of the enzyme by EDTA and its subsequent inactivation at 65 degrees C. The DNase I treated samples were further purified with phenol: chloroform followed by precipitation with ice-cold ethanol (protocol I) or, alternatively, they were directly used in RT-PCR reactions (protocol II). Transcripts from ACT1, PDA1, CNA1, CNA2, TPS1 and TPS2 analyzed after each treatment showed that all mRNAs tested can be amplified if total RNA was extracted and purified after DNase I treatment, however, only TPS1, TPS2 and ACT1 mRNAs were amplified without extraction/purification step.

Conclusion: Although more laborious and requiring a higher initial amount of material, the inclusion of an extraction and purification step allows to prepare RNA samples that are free from DNA and from low molecular contaminants and can be applied to amplify any Saccharomyces cerevisiae mRNA by RT-PCR.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Del Aguila EM, Dutra MB, Silva JT, Paschoalin VM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference