Reference: Steiger MA, et al. (2005) Analysis of 2'-phosphotransferase (Tpt1p) from Saccharomyces cerevisiae: evidence for a conserved two-step reaction mechanism. RNA 11(1):99-106

Reference Help

Abstract


Tpt1p is an essential protein responsible for the 2'-phosphotransferase step of tRNA splicing in Saccharomyces cerevisiae, in which the splice junction 2'-phosphate of ligated tRNA is transferred to NAD to form mature tRNA and ADP-ribose 1''-2'' cyclic phosphate. We showed previously that Tpt1p is a member of a family of functional 2'-phosphotransferases found in eukaryotes, eubacteria, and archaea, that the Escherichia coli protein (KptA) is highly specific for 2'-phosphorylated RNAs despite the lack of obvious natural substrates, and that KptA acts on a trinucleotide substrate through an intermediate in which RNA is ADP-ribosylated at the 2'-phosphate. This mechanism is similar to a proposed mechanism of NAD-dependent histone deacetylases. We present evidence here that this mechanism is conserved in S. cerevisiae, and we identify residues important for the second step of the reaction, during which the intermediate is resolved into products. We examined 21 Tpt1 protein variants mutated in conserved residues or blocks of residues and show that one of them, Tpt1 K69A/R71S protein, accumulates large amounts of intermediate with trinucleotide substrate due to a very slow second step. This intermediate can be trapped on beads when formed with biotin-NAD. We also show that Tpt1 K69A/R71S protein forms an intermediate with the natural ligated tRNA substrate and demonstrate that, as expected, this mutation is lethal in yeast. The high degree of conservation of these residues suggests that the entire Tpt1p family is involved in a similar two-step chemical reaction.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Steiger MA, Jackman JE, Phizicky EM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference