Reference: Tsui MM and Banfield DK (2000) Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113 ( Pt 1):145-52

Reference Help

Abstract


The transport of proteins between various compartments of the secretory pathway occurs by the budding of vesicles from one membrane and their fusion with another. A key event in this process is the selective recognition of the target membrane by the vesicle and the current view is that SNARE protein interactions likely play a central role in vesicle-target recognition and or membrane fusion. In yeast, only a single syntaxin (Sed5p) is required for Golgi transport and Sed5p is known to bind to at least 7 SNARE proteins. However, the number of Sed5p-containing SNARE complexes that exist in cells is not known. In this study we examined direct pair-wise interactions between full length soluble recombinant forms of SNAREs (Sed5p, Sft1p, Ykt6p, Vti1p, Gos1p, Sec22p, Bos1p, and Bet1p) involved in ER-Golgi and intra-Golgi membrane trafficking. In the binding assay that we describe here the majority of SNARE-binary interactions tested were positive, indicating that SNARE-SNARE interactions although promiscuous are not entirely non-selective. Interactions between a number of the genes encoding these SNAREs are consistent with our binding data and taken together our results suggest that functionally redundant Golgi SNARE-complexes exist in yeast. In particular, over-expression of Bet1p (a SNARE required for ER-Golgi and Golgi-ER traffic) and can bypass the requirement for the otherwise essential SNARE Sft1p (required for intra-Golgi traffic), suggesting that Bet1p either functions in a parallel pathway with Sft1p or can be incorporated into SNARE-complexes in place of Sftp1. None-the-less this result suggests that Bet1p can participate in two distinct trafficking steps, cycling between the ER and Golgi as well as in retrograde intra-Golgi traffic. In addition, suppressor genetics together with the analysis of the phenotypes of conditional mutations in Sft1p and Ykt6p, are consistent with a role for these SNAREs in more than one trafficking step. We propose that different combinations of SNAREs form complexes with Sed5p and are required for multiple steps in ER-Golgi and intra-Golgi vesicular traffic. And that the apparent promiscuity of SNARE-SNARE binding interactions, together with the requirement for some SNAREs in more than one trafficking step, supports the view that the specificity of vesicle fusion events cannot be explained solely on the basis of SNARE-SNARE interactions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tsui MM, Banfield DK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference