Reference: Wang X, et al. (2003) Thermodynamic characterization of the folding coupled DNA binding by the monomeric transcription activator GCN4 peptide. Biophys J 84(3):1867-75

Reference Help

Abstract


Dimerization is a widely believed critical requirement for the yeast transcriptional activator GCN4 specifically recognizing its DNA target sites. Nonetheless, the binding of the monomeric GCN4 to DNA target sites AP-1 and ATF/CREB was recently detected by kinetic studies. Here, for the first time, we present a detailed description of the thermodynamics of a monomeric peptide GCN4-br, the basic region (226-252) of GCN4, binding to AP-1, and ATF/CREB. GCN4 specifically binds to AP-1 and ATF/CREB in the monomeric form as shown by our circular dichroism thermal unfolding measurements. Isothermal titration calorimetry experiments indicate that the binding process of GCN4-br with DNA is enthalpically driven, accompanied by an unfavorable entropy change. The temperature dependence of DeltaH(0) reveals negative changes in heat capacity DeltaC(p): DeltaC(p) = -0.92 kJ. mol(-1) K(-1) and DeltaC(p) = -0.95 kJ. mol(-1) K(-1) for GCN4-br binding to AP-1 and ATF/CREB, respectively, which is a striking manifestation of GCN4-br specifically recognizing DNA target sites. These thermodynamic characteristics may give new insight into the mechanism by which GCN4 protein binds to DNA target sites for its transcriptional regulation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wang X, Cao W, Cao A, Lai L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference