Reference: Clarke ND and Granek JA (2003) Rank order metrics for quantifying the association of sequence features with gene regulation. Bioinformatics 19(2):212-8

Reference Help

Abstract


Motivation: Genome sequences and transcriptome analyses allow the correlation between gene regulation and DNA sequence features to be studied at the whole-genome level. To quantify these correlations, metrics are needed that can be applied to any sequence feature, regardless of its statistical distribution. It is also desirable for the metric values to be determined objectively, that is, without the use of subjective threshold values.

Results: We compare two metrics for quantifying the correlation of DNA sequence features with gene regulation. Each of the metrics is calculated from a rank-ordering of genes based on the value of the sequence feature of interest. The first metric is the area under the curve for a receiver operator characteristic plot (ROC AUC), a common way of summarizing the tradeoff between sensitivity and specificity for different values of a prediction criterion. We call the second metric the mean normalized conditional probability (MNCP). The MNCP can be thought of as the predictive value of the sequence feature averaged over all regulated genes. The statistical significance (P-value) of each metric can be estimated from simulations. Importantly, the P-value of the MNCP metric is less dramatically affected by the presence of false positives among the set of co-regulated genes than is the ROC AUC. This is especially useful in analyzing gene sets identified by DNA microarray analysis because such data cannot distinguish direct regulation by transcription factor binding from indirect regulation. We demonstrate that these two metrics, taken together, are useful tools for defining the binding site representation and regulatory control regions that best explain the difference between genes that are regulated by a given transcription factor and those that are not. Applications to other gene features are also described.

Availability: A Python program for calculating the ROC AUC and MNCP metric values given input rank orders is available from ftp://ftp.bs.jhmi.edu/users/nclarke/MNCP/

Reference Type
Comparative Study | Evaluation Study | Journal Article
Authors
Clarke ND, Granek JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference