Reference: Okamoto Y, et al. (2003) Functional analysis of ISC1 by site-directed mutagenesis. Biochemistry 42(25):7855-62

Reference Help

Abstract


We previously reported that the yeast Saccharomyces cerevisiae ISC1 gene (Yer019w), which has homology to the bacterial sphingomyelinase gene, encodes inositol phosphosphingolipids-phospholipase C, Isc1p [Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798]. The present study was conducted to determine specific domains in Isc1p required for catalysis. Several amino acid residues are conserved from bacterial sphingomyelinase to mammalian sphingomyelinase and are also found in ISC1. Individual mutation of the conserved E100, N233, and H334 resulted in complete loss of Isc1p activity, suggesting an essential role in catalysis for these amino acid residues. Isc1p also contains a domain (from G162 to S169) with homology to P-loop domains, found in nucleotide-binding proteins. In addition, two amino acid residues from this domain, D163 and K168, are conserved from bacterial to mammalian sphingomyelinases in this "P-loop-like domain". G162, D163, G167, K168, and S169 were replaced individually with alanine using site-directed mutagenesis. D163A and K168A lost activity completely. Mutations in the other three positions rendered enzyme versions with much reduced but detectable activity. The V(max) values for G162A, G167A, and S169A were reduced, compared with wild type, but the K(m) values for G162A, G167A, and S169A were similar to that of wild type, indicating that the substrate binding efficiency was not greatly altered in these mutants and that the P-loop-like domain of ISC1 might be essential in catalysis of Isc1p. Furthermore, the Mg(2+) K(a) constants for G162A, G167, and S169A were higher than that for wild type, suggesting that this P-loop-like domain may be involved in Mg(2+) binding. Although cell lysates from yeast cells overexpressing all mutants similarly bound to phosphatidylserine (PS), an anionic lipid activator of Isc1p, G162A and G167A required 13.3 mol % PS to achieve maximum activity compared to 6.7 mol % for the wild-type enzyme, suggesting that PS might play a role in optimal catalytic efficiency of Isc1p via this P-loop-like domain. This study provides novel insight into a new domain found in Isc1p and related enzymes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Okamoto Y, Vaena de Avalos S, Hannun YA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference