Reference: Parrish JC, et al. (2001) Contribution of leucine 85 to the structure and function of Saccharomyces cerevisiae iso-1 cytochrome c. Biochem Cell Biol 79(4):517-24

Reference Help

Abstract


Cytochrome c is a small electron-transport protein whose major role is to transfer electrons between complex III (cytochrome reductase) and complex IV (cytochrome c oxidase) in the inner mitochondrial membrane of eukaryotes. Cytochrome c is used as a model for the examination of protein folding and structure and for the study of biological electron-transport processes. Amongst 96 cytochrome c sequences, residue 85 is generally conserved as either isoleucine or leucine. Spatially, the side chain is associated closely with that of the invariant residue Phe82, and this interaction may be important for optimal cytochrome c activity. The functional role of residue 85 has been examined using six site-directed mutants of Saccharomyces cerevisiae iso-1 cytochrome c, including, for the first time, kinetic data for electron transfer with the principle physiological partners. Results indicate two likely roles for the residue: first, heme crevice resistance to ligand exchange, sensitive to both the hydrophobicity and volume of the side chain; second, modulation of electron-transport activity through maintenance of the hydrophobic character of the protein in the vicinity of Phe82 and the exposed heme edge, and possibly of the ability of this region to facilitate redox-linked conformational change.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Parrish JC, Guillemette JG, Wallace CJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference