Reference: Johzuka K and Horiuchi T (2002) Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae. Genes Cells 7(2):99-113

Reference Help

Abstract


Background: The analysis of homologous recombination in the tandemly repeating rDNA array of Saccharomyces cerevisiae should provide useful information about the stability of not only the rDNA repeat but also the abundant repeated sequences on higher eukaryotic genomes. However, the data obtained so far are not yet conclusive, due to the absence of a reliable assay for detecting products of recombination in the rDNA array.

Results: We developed an assay method to detect the products of unequal sister-chromatid recombination (marker-duplication products) in yeast rDNA. This assay, together with the circular rDNA detection assay, was used for the analysis. Marker-duplication occurred throughout the rDNA cluster, preferentially between nearby repeat units. The FOB1 and RAD52 genes were required for both types of recombinant formation. FOB1 showed a gene dosage effect on not only the amounts of both recombinants, but also on the copy number of the repeat. However, unlike the RAD52 gene, the FOB1 gene was not involved in homologous recombination in a non-rDNA locus. In addition, the marker-duplication products were drastically decreased in the mre11 mutant.

Conclusion: Our data demonstrate that FOB1- and RAD52-dependent homologous recombination cause the gain and loss of a few copies of the rDNA unit, and this must be a basic mechanism responsible for amplification and reduction of the rDNA copy number. In addition, FOB1 may also play a role in the copy number regulation of rDNA tandem repeats.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Johzuka K, Horiuchi T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference