Reference: Nobe Y, et al. (1998) The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. J Biol Chem 273(45):29554-64

Reference Help

Abstract


Aspartate aminotransferase (AspAT) is a unique enzyme that can react with two types of substrate with quite different properties, acidic substrates, such as aspartate and glutamate, and neutral substrates, although the catalytic group Lys-258 acts on both types of substrate. The dynamic properties of the substrate-binding site are indispensable to the interaction with hydrophobic substrates (Kawaguchi, S., Nobe, Y., Yasuoka, J., Wakamiya, T., Kusumoto, S., and Kuramitsu, S. (1997) J. Biochem. (Tokyo) 122, 55-63). AspATs from various organisms are classified into two subgroups, Ia and Ib. The former includes AspATs from Escherichia coli and higher eukaryotes, whereas the latter includes those from Thermus thermophilus and many prokaryotes. The AspATs belonging to subgroup Ia each have an Arg-292 residue, which interacts with the distal carboxyl groups of dicarboxylic (acidic) substrates, but the functionally similar residue of subgroup Ib AspATs has not been identified. In view of the x-ray crystallographic structure of T. thermophilus AspAT, we expected Lys-109 to be this residue in the subgroup Ib AspATs and constructed K109V and K109S mutants. Replacing Lys-109 with Val or Ser resulted in loss of activity toward acidic substrates but increased that toward the neutral substrate, alanine, considerably. These results indicate that Lys-109 is a major determinant of the acidic substrate specificity of subgroup Ib AspATs. Kinetic analysis of the interactions with neutral substrates indicated that T. thermophilus AspAT is subject to less steric hindrance and its substrate-binding pocket has a more flexible conformation than E. coli AspAT. A flexible active site in the rigid T. thermophilus AspAT molecule may explain its high activity even at room temperature.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nobe Y, Kawaguchi S, Ura H, Nakai T, Hirotsu K, Kato R, Kuramitsu S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference