Reference: Ikeda M, et al. (1996) CTBP1/RBP1, a Saccharomyces cerevisiae protein which binds to T-rich single-stranded DNA containing the 11-bp core sequence of autonomously replicating sequence, is a poly(deoxypyrimidine)-binding protein. Eur J Biochem 238(1):38-47

Reference Help

Abstract


South-Western screening of a glutathione-S-transferase fusion protein library constructed from the yeast Saccharomyces cerevisiae genomic DNA lead to isolation of core T-rich-strand-binding protein (CTBP) clones that bound to single-stranded DNA containing the T-rich-strand of the 11-bp core sequence of autonomously replicating sequences. One of these clones, CTBP1, contains a portion of previously described RBP1 which is an RNA-binding and single-stranded DNA-binding protein of S. cerevisiae. GST-CTBP1 as well as the full-length fusion protein with RBP1 (GST-RBP1) bind exclusively to the T-rich strand of the core sequence with an apparent dissociation constant of 5 nM, but not to the A-rich strand or double strand of the same sequence. Mutations within the core which reduce the number of T or C residues decrease the affinity of this protein. In keeping with this, binding of GST-CTBP1 to the core sequence is efficiently completed by poly(dT), poly(dT-dC) or poly(dC), but not by poly(dA) or poly(dG) to significant extents. Among polyribonucleic acids, GST-CTBP1 binds to poly(U) and poly(I) with greatest affinity, whereas GST-RBP1 binds to RNA in a rather non-specific manner. In no cases was affinity for RNA greater than that for DNA. Our results indicate that CTBP1/RBP1 is a polydeoxypyrimidine-binding protein of S. cerevisiae. CTBP1 contains two sets of an RNA-recognition motif (RRM) and a glutamine stretch. The binding affinity of the N-terminal or C-terminal set containing one RRM and one glutamine stretch is nearly two orders of magnitude lower than that of the wild-type CTBP1 containing both sets. The isolated N-terminal or C-terminal RRM alone (RRM1 and RRM2, respectively) is sufficient for binding nucleic acids with the binding specificity similar to that of the wild-type RRM, although the binding affinity of the isolated RRM2 is nearly two orders of magnitude lower than that of RRM1. Our results indicate that the two RRMs present in CTBP1/RBP1 have differential binding affinities and that the high affinity of RRM for polydeoxypyrimidine results from synergy between two lower-affinity RRMs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ikeda M, Arai K, Masai H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference