Reference: Mowat CG, et al. (2001) Kinetic and crystallographic analysis of the key active site acid/base arginine in a soluble fumarate reductase. Biochemistry 40(41):12292-8

Reference Help

Abstract


There is now overwhelming evidence supporting a common mechanism for fumarate reduction in the respiratory fumarate reductases. The X-ray structures of substrate-bound forms of these enzymes indicate that the substrate is well positioned to accept a hydride from FAD and a proton from an arginine side chain. Recent work on the enzyme from Shewanella frigidimarina [Doherty, M. K., Pealing, S. L., Miles, C. S., Moysey, R., Taylor, P., Walkinshaw, M. D., Reid, G. A., and Chapman, S. K. (2000) Biochemistry 39, 10695-10701] has strengthened the assignment of an arginine (Arg402) as the proton donor in fumarate reduction. Here we describe the crystallographic and kinetic analyses of the R402A, R402K, and R402Y mutant forms of the Shewanella enzyme. The crystal structure of the R402A mutant (2.0 A resolution) shows it to be virtually identical to the wild-type enzyme, apart from the fact that a water molecule occupies the position previously taken by part of the guanidine group of R402. Although structurally similar to the wild-type enzyme, the R402A mutant is inactive under all the conditions that were studied. This implies that a water molecule, in this position in the active site, cannot function as the proton donor for fumarate reduction. In contrast to the R402A mutation, both the R402K and R402Y mutant enzymes are active. Although this activity was at a very low level (at pH 7.2 some 10(4)-fold lower than that for the wild type), it does imply that both lysine and tyrosine can fulfill the role of an active site proton donor, albeit very poorly. The crystal structures of the R402K and R402Y mutant enzymes (2.0 A resolution) show that distances from the lysine and tyrosine side chains to the nearest carbon atom of fumarate are approximately 3.5 A, clearly permitting proton transfer. The combined results from mutagenesis, crystallographic, and kinetic studies provide formidable evidence that R402 acts as both a Lewis acid (stabilizing the build-up of negative charge upon hydride transfer from FAD to fumarate) and a Brønsted acid (donating the proton to the substrate to complete the formation of succinate).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mowat CG, Moysey R, Miles CS, Leys D, Doherty MK, Taylor P, Walkinshaw MD, Reid GA, Chapman SK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference