Reference: Heffron SE and Jurnak F (2000) Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 A resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39(1):37-45

Reference Help

Abstract


The structure of a 1:1 molar complex between Escherichia coli elongation factor (EF) Tu-GDP and the cyclic thiazolyl peptide antibiotic, GE2270A, has been determined by X-ray diffraction analysis to a resolution of 2.35 A and refined to a crystallographic refinement factor of 20.6%. The antibiotic binds in the second domain of EF-Tu-GDP, making contact with three segments of amino acids (residues 215-230, 256-264, and 273-277). The majority of the protein-antibiotic contacts are van der Waals interactions. A striking feature of the antibiotic binding site is the presence of a salt bridge, not previously observed in other EF-Tu complexes. The ionic interaction between Arg 223 and Glu 259 forms over the antibiotic and probably accounts for the strong affinity observed between EF-Tu and GE2270A. Arg 223 and Glu 259 are highly conserved, but not invariant throughout the prokaryotic EF-Tu family, suggesting that the antibiotic may bind EF-Tu from some organisms better than others may. Superposition of the antibiotic binding site on the EF-Tu-GTP conformation reveals that one region of the antibiotic would form steric clashes with the guanine nucleotide-binding domain in the GTP, but not the GDP, conformation. Another region of the antibiotic binds to the same site as the aminoacyl group of tRNA. Together with prior biochemical studies, the structural findings confirm that GE2270A inhibits protein synthesis by blocking the GDP to GTP conformational change and by directly competing with aminoacyl-tRNA for the same binding site on EF-Tu. In each of the bacterial strains that are resistant to GE2270A, the effect of a site-specific mutation in EF-Tu could explain resistance. Comparison of the GE2270A site in EF-Tu with sequence homologues, EF-G and EF-1alpha, suggests steric clashes that would prevent the antibiotic from binding to translocation factors or to the eukaryotic equivalent of EF-Tu. Although GE2270A is a potent antibiotic, its clinical efficacy is limited by its low aqueous solubility. The results presented here provide the details necessary to enhance the solubility of GE2270A without disrupting its inhibitory properties.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Heffron SE, Jurnak F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference