Reference: Faure M, et al. (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins. Eur J Biochem 267(10):2890-8

Reference Help

Abstract


The glycine decarboxylase complex consists of four different component enzymes (P-, H-, T- and L-proteins). The 14-kDa lipoamide-containing H-protein plays a pivotal role in the complete sequence of reactions as its prosthetic group (lipoic acid) interacts successively with the three other components of the complex and undergoes a cycle of reductive methylamination, methylamine transfer and electron transfer. With the aim to understand the interaction between the H-protein and its different partners, we have previously determined the crystal structure of the oxidized and methylaminated forms of the H-protein. In the present study, we have crystallized the H-protein in its reduced state and the L-protein (lipoamide dehydrogenase or dihydrolipoamide dehydrogenase). The L-protein has been overexpressed in Escherichia coli and refolded from inclusion bodies in an active form. Crystals were obtained from the refolded L-protein and the structure has been determined by X-ray crystallography. This first crystal structure of a plant dihydrolipoamide dehydrogenase is similar to other known dihydrolipoamide dehydrogenase structures. The crystal structure of the H-protein in its reduced form has been determined and compared to the structure of the other forms of the protein. It is isomorphous to the structure of the oxidized form. In contrast with methylaminated H-protein where the loaded lipoamide arm was locked into a cavity of the protein, the reduced lipoamide arm appeared freely exposed to the solvent. Such a freedom is required to allow its targeting inside the hollow active site of L-protein. Our results strongly suggest that a direct interaction between the H- and L-proteins is not necessary for the reoxidation of the reduced lipoamide arm bound to the H-protein. This hypothesis is supported by biochemical data [Neuburger, M., Polidori, A.M., Piètre, E., Faure, M., Jourdain, A., Bourguignon, J., Pucci, B. & Douce, R. (2000) Eur. J. Biochem. 267, 2882-2889] and by small angle X-ray scattering experiments reported herein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Faure M, Bourguignon J, Neuburger M, MacHerel D, Sieker L, Ober R, Kahn R, Cohen-Addad C, Douce R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference