Reference: Goldgur Y, et al. (1997) The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe. Structure 5(1):59-68

Reference Help

Abstract


Background: In the translation of the genetic code each aminoacyl-tRNA synthetase (aaRS) must recognize its own (cognate) tRNA and attach the corresponding amino acid to the acceptor end of tRNA, discriminating all the others. The(alphabeta)2 phenylalanyl-tRNA synthetase (PheRS) is one of the most complex enzymes in the aaRS family and is characterized by anomalous charging properties. Structurally, the enzyme belongs to class II aaRSs, as its catalytic domain is built around an antiparallel beta sheet, but functionally it resembles class I as it aminoacylates the 2'OH of the terminal ribose of tRNA (class II aaRSs aminoacylate the 3'OH). With the availability of the three-dimensional structure of the complex between multisubunit PheRS and tRNAPhe, a fuller picture of the specific tRNA-aaRS interactions is beginning to emerge.

Results: The crystal structure of Thermus thermophilus PheRS complexed with cognate tRNA has been solved at 3.28 A resolution. It reveals that one tRNAPhe molecule binds across all four PheRS subunits. The interactions of PheRS with tRNA stabilize the flexible N-terminal part of the alpha subunit, which appeared to form the enzyme's 11th domain, comprising a coiled-coil structure (helical arm) built up of two long antiparallel alpha helices. The helical arms are similar to those observed in SerRS and are in the same relative orientation with respect to the catalytic domain. Anticodon recognition upon tRNA binding is performed by the B8 domain, the structure of which is similar to that of the RNA-binding domain (RBD) of the small spliceosomal protein U1A. The Th. thermophilus PheRS approaches the anticodon loop from the minor groove side.

Conclusions: The mode of interactions with tRNA explains the absolute necessity for the (alphabeta)2 architecture of PheRS. The interactions of tRNAPhe with PheRS and particularly with the coiled-coil domain of the alpha subunit result in conformational changes in TPsiC and D loops seen by comparison with uncomplexed yeast tRNAPhe. The tRNAPhe is a newly recognized type of RNA molecule specifically interacting with the RBD fold. In addition, a new type of anticodon-binding domain emerges in the aaRS family. The uniqueness of PheRS in charging 2'OH of tRNA is dictated by the size of its adenine-binding pocket and by the local conformation of the tRNA's CCA end.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference