Reference: Lo TP, et al. (1995) Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c. Protein Sci 4(2):198-208

Reference Help

Abstract


A cluster of highly conserved leucine side chains from residues 9, 68, 85, 94, and 98 is located in the hydrophobic heme pocket of cytochrome c. The contributions of two of these, Leu 85 and Leu 94, have been studied using a protein structure-function-mutagenesis approach to probe their roles in the maintenance of overall structural integrity and electron transfer activity. Structural studies of the L85C, L85F, L85M, and L94S mutant proteins show that, in each case, the overall fold of cytochrome c is retained, but that localized conformational shifts are required to accommodate the introduced side chains. In particular, the side chains of Cys 85 and Phe 85 form energetically favorable interactions with Phe 82, whereas Met 85 takes on a more remote conformation to prevent an unfavorable interaction with the phenyl ring of Phe 82. In the case of the L94S mutant protein, the new polar group introduced is found to form hydrogen bonds to nearby carbonyl groups. In all proteins with substitutions at Leu 85, the hydrophobic nature of the heme pocket is preserved and no significant decrease in heme reduction potential is observed. Despite earlier predictions that Leu 85 is an important determinant in cytochrome c electron transfer partner complexation, our studies show this is unlikely to be the case because the considerable surface contour perturbations made by substitutions at this residue do not correspondingly translate into significant changes in electron transfer rates. For the L94S mutant protein, the substitution of a polar hydroxyl group directly into the hydrophobic heme pocket has a larger effect on heme reduction potential, but this is mitigated by two factors. First, the side chain of Ser 94 is rotated away from the heme group and, second, the side chain of Leu 98 shifts into a portion of the new space available, partially shielding the heme group. The Leu 94 Ser substitution does not perturb the highly conserved interface formed by the nearly perpendicular packing of the N- and C-terminal helices of cytochrome c, ruling this out as the cause of this mutant protein becoming thermally labile and having a lower functional activity. Our results show these effects are most likely attributable to disruption of the heme pocket region. Much of the ability of cytochrome c to absorb the introduction of mutations at Leu 85 and Leu 94 appears to be a consequence of the conformational flexibility afforded by the leucine cluster in this region as well as the presence of a nearby internal cavity.(ABSTRACT TRUNCATED AT 400 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lo TP, Murphy ME, Guillemette JG, Smith M, Brayer GD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference