Reference: Aberg A, et al. (1993) Autocatalytic generation of dopa in the engineered protein R2 F208Y from Escherichia coli ribonucleotide reductase and crystal structure of the dopa-208 protein. Biochemistry 32(37):9845-50

Reference Help

Abstract


The mutant form Phe-208-->Tyr of the R2 protein of Escherichia coli ribonucleotide reductase contains an intrinsic ferric-Dopa cofactor with characteristic absorption bands at 460 and ca. 700 nm [Ormö, M., de Maré, F., Regnström, K., Aberg, A., Sahlin, M., Ling, J., Loehr, T. M., Sanders-Loehr, J., & Sjöberg, B. M. (1992) J. Biol. Chem. 267, 8711-8714]. The three-dimensional structure of the mutant protein, solved to 2.5-A resolution, shows that the Dopa is localized to residue 208 and that it is a bidentate ligand of Fe1 of the binuclear iron center of protein R2. Nascent apoR2 F208Y, lacking metal ions, can be purified from overproducing cells grown in iron-depleted medium. ApoR2 F208Y is rapidly and quantitatively converted to the Dopa-208 form in vitro by addition of ferrous iron in the presence of oxygen. Other metal ions (Cu2+, Mn2+, Co2+) known to bind to the metal site of wild-type apoR2 do not generate a Dopa in apoR2 F208Y. The autocatalytic generation of Dopa does not require the presence of a tyrosine residue at position 122, the tyrosine which in a wild-type R2 protein acquires the catalytically essential tyrosyl radical. It is proposed that generation of Dopa initially follows the suggested reaction mechanism for tyrosyl radical generation in the wild-type protein and involves a ferryl intermediate, which in the case of the mutant R2 protein oxygenates Tyr 208. This autocatalytic metal-mediated reaction in the engineered R2 F208Y protein may serve as a model for formation of covalently bound quinones in other proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Aberg A, Ormö M, Nordlund P, Sjöberg BM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference