Reference: Tchórzewski M, et al. (2000) Oligomerization properties of the acidic ribosomal P-proteins from Saccharomyces cerevisiae: effect of P1A protein phosphorylation on the formation of the P1A-P2B hetero-complex. Biochim Biophys Acta 1499(1-2):63-73

Reference Help

Abstract


Acidic ribosomal P-proteins form, in all eukaryotic cells, a lateral protuberance, the so-called 'stalk', which is directly involved in translational activity of the ribosomes. In Saccharomyces cerevisiae cells, there are four distinct P-proteins: P1A, P1B, P2A and P2B. In spite of the high level of their structural homology, they are not completely equivalent and may perform different functions. As yet, the protein-protein interactions between yeast P-proteins have not been fully defined. In this paper, the interplay between yeast P-proteins has been investigated by means of a two-hybrid system, chemical cross-linking and gel filtration. The data presented herein show that all P-proteins are able to form homo-oligomeric complexes. By analyzing hetero-interactions, we were able to detect strong interactions between P1A and P2B proteins. Additionally, the pair of P1B and P2A proteins is also able to form a hetero-complex, though at a very low efficiency. All P-proteins are phosphorylated by numerous protein kinases. Using the multifunctional protein kinase CK II, we have shown that incorporation of phosphate into P1A protein can exert its effect on the hetero-oligomerization process, namely by preventing the formation of the hetero-oligomer P1A-P/P2B. These findings are the first to show differences in the oligomerization behavior of the yeast P-proteins; moreover, they emphasize a significant impact of the phosphorylation on the formations of P-protein complex.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tchórzewski M, Boguszewska A, Dukowski P, Grankowski N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference