Reference: Hon T, et al. (1999) The yeast heme-responsive transcriptional activator Hap1 is a preexisting dimer in the absence of heme. J Biol Chem 274(32):22770-4

Reference Help

Abstract


In the absence of heme, Hap1 is associated with molecular chaperones such as Hsp90 and Ydj1 and forms a higher order complex termed HMC. Heme disrupts this complex and permits Hap1 to bind to DNA with high affinity, thereby activating transcription. Heme regulation of Hap1 activity is analogous to the regulation of steroid receptors by steroids, which involves molecular chaperones. Steroid receptors often exist as monomers when associated with molecular chaperones in the absence of ligand but as dimers when activated by steroids. Furthermore, previous studies indicate that dimerization might be important for heme activation of Hap1. We therefore determined whether Hap1 is a monomer or oligomer in the absence of heme. By coeluting two Hap1 size variants and by comparing DNA binding properties of the HMC and Hap1 dimer, we show that Hap1 is a preexisting dimer in the HMC. Further, increasing overexpression of Hap1 caused progressive increases in Hap1 DNA binding and transcriptional activities. Our data suggest that in the absence of heme, Hap1 exists as a dimer, and the two subunits act cooperatively in DNA binding. Hap1 repression is caused, at least in part, by inhibition of the DNA binding activity of the preexisting dimer.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Hon T, Hach A, Tamalis D, Zhu Y, Zhang L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference