Reference: Muthukrishnan K and Nall BT (1991) Effective concentrations of amino acid side chains in an unfolded protein. Biochemistry 30(19):4706-10

Reference Help

Abstract


Preferential interactions between chain segments are studied in unfolded cytochrome c. The method takes advantage of heme ligation in the unfolded protein, a feature unique to proteins with covalently attached heme. The approach allows estimation of the effective concentration of one polypeptide chain segment relative to another, and is successful in detecting differences for peptide chain segments separated by different numbers of residues in the linear sequence. The method uses proton NMR spectroscopy to monitor displacement of the histidine heme ligands by imidazole as guanidine hydrochloride unfolded cytochrome c is titrated with deuterated imidazole. When the imidazole concentration exceeds the effective (local) concentration of histidine ligands, the protein ligands are displaced by deuterated imidazole. On displacement, the histidine ring proton resonances move from the paramagnetic region of the spectrum to the diamagnetic region. Titrations have been carried out for members of the mitochondrial cytochrome c family that contain different numbers of histidine residues. These include cytochromes c from tuna (2), yeast iso-2 (3), and yeast iso-1-MS (4). At high imidazole concentration, the number of proton resonances that appear in the histidine ring C2H region of the NMR spectrum is one less than the number of histidine residues in the protein. So one histidine, probably His-18, remains as a heme ligand. The effective local concentrations of histidines-26, -33, and -39 relative to the heme (position 14-17) are estimated to be (3-16) X 10(-3) M.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Muthukrishnan K, Nall BT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference