Reference: Piérard A and Schröter B (1978) Structure-function relationships in the arginine pathway carbamoylphosphate synthase of Saccharomyces cerevisiae. J Bacteriol 134(1):167-76

Reference Help

Abstract


The arginine pathway carbamoylphosphate synthase (CPSase A) from Saccharomyces cerevisiae was shown to be highly unstable and could not be substantially purified. In spite of this instability, a number of important properties of this enzyme were determined with crude preparations. A molecular weight of 140,000 (7.9S) was estimated for the native enzyme by sucrose gradient centrifugation; a significantly higher value, 175,000, was obtained by gel filtration on Sephadex. The enzyme is an aggregate consisting of two protein components, coded for by the unlinked genes cpaI and cpaII. These components were separated by diethylaminoethyl-cellulose chromatography. Their molecular weights, estimated by Sephadex gel filtration, were 36,000 and 130,000. The large component catalyzed the synthesis of carbamoylphosphate from ammonia. The small component was required in addition to the large one for the physiologically functional glutamine-dependent activity. Apparent Michaelis constants at pH 7.5 of 1.25 mM for glutamine and 75 mM for NH(4)Cl were measured with the native enzyme. The use of various glutamine analogs, including 2-amino-4-oxo-5-chloropentanoic acid, indicated that binding of glutamine to a site located on the small component was followed by transfer of its amide nitrogen to the ammonia site on the heavy component. This ammonia site was able to function independently of the utilization of glutamine. However, binding of glutamine was conjectured to cause a conformational change in the heavy component that greatly increased the rate of synthesis of carbamoylphosphate from ammonia. Glutamine, which was also shown to stabilize the aggregation of the two components, appeared to be a major effector of the catalytic and structural properties of CPSase A. In view of these observations, the CPSase A of yeast appears to share a number of structural and catalytic properties with the Escherichia coli enzyme. Obviously, the unlinked cpaI and cpaII genes of yeast are homologous to the adjacent carA and carB genes that code for the two subunits of the bacterial enzyme.

Reference Type
Journal Article
Authors
Piérard A, Schröter B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference