Reference: Jörnvall H, et al. (1984) Extensive variations and basic features in the alcohol dehydrogenase-sorbitol dehydrogenase family. Eur J Biochem 140(1):17-23

Reference Help

Abstract


Structural comparisons of sorbitol dehydrogenase with zinc-containing 'long' alcohol dehydrogenases reveal distant but clear relationships. An alignment suggests 93 positional identities with horse liver alcohol dehydrogenase (25% of 374 positions) and 73 identities with yeast alcohol dehydrogenase (20%). Sorbitol dehydrogenase forms a link between these distantly related alcohol dehydrogenases and is in some regions more similar to one of them that they are to each other. 43 residues (11%) are common to all three enzymes and include a heavy over-representation of glycine (half of all glycine residues in sorbitol dehydrogenase), showing the importance of space restrictions in protein structures. Four regions are well conserved, two in each domain of horse liver alcohol dehydrogenase. They are two segments close to the active-site zinc atom of the catalytic domain, and two in the central beta-pleated sheet strands of the coenzyme-binding domain. These similarities demonstrate the general importance of internal and central building units in proteins. Large variations affect a region adjacent to the third protein ligand to the active-site zinc atom in horse liver alcohol dehydrogenase. Such changes at active sites of related enzymes are unusual. Other large differences concern the segment around the non-catalytic zinc atom of horse liver alcohol dehydrogenase; three of its four cysteine ligands are absent from sorbitol dehydrogenase. Three segments with several exchanges correspond to a continuous region with superficial areas, inter-domain contacts and inter-subunit interactions in the catalytic domain of alcohol dehydrogenase. They may correlate with the altered quaternary structure of sorbitol dehydrogenase. Regions corresponding to top and bottom beta-strands in the coenzyme-binding domain of the alcohol dehydrogenase are also little conserved. Within sorbitol dehydrogenase, a large segment shows an internal similarity. The two distantly related alcohol dehydrogenases and sorbitol dehydrogenase form a triplet of enzymes illustrating basic protein relationships. They are ancestrally close enough to establish similarities, yet sufficiently divergent to illustrate changes in all but fundamental properties.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Jörnvall H, von Bahr-Lindström H, Jeffery J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference