Reference: Rodríguez S, et al. (2001) Highly stereoselective reagents for beta-keto ester reductions by genetic engineering of baker's yeast. J Am Chem Soc 123(8):1547-55

Reference Help

Abstract


While whole cells of baker's yeast (Saccharomyces cerevisiae) are a convenient biocatalytic reducing agent for a wide variety of carbonyl compounds, mixtures of stereoisomeric alcohols are often observed since the organism contains a large number of reductase enzymes with overlapping substrate specificities but differing stereoselectivities. We sought to improve the performance of baker's yeast for beta-keto ester reductions by using recombinant DNA techniques to alter the levels of three enzymes known to play important roles in these reactions (fatty acid synthase, Fasp; aldo-keto reductase, Ypr1p; alpha-acetoxy ketone reductase, Gre2p). A complete set of "first-generation" yeast strains that either lack or overexpress each of these three enzymes was created and tested for improvements in stereoselective reductions of a series of beta-keto esters. On the basis of these results, multiply modified ("second-generation") strains were created that combined gene knockout and overexpression in single strains. In some cases, these additional modifications further improved the stereoselectivities of beta-keto ester reductions, thereby making several beta-hydroxy ester building blocks readily available by reactions that can be performed by nonspecialists. This work also revealed that additional yeast proteins participate in reducing beta-keto esters, and further progress using this strategy will require either additional genetic manipulations or the expression of yeast reductases in hosts that lack enzymes with overlapping substrate specificity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Rodríguez S, Kayser MM, Stewart JD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference