Reference: Lalo D, et al. (1996) RRN11 encodes the third subunit of the complex containing Rrn6p and Rrn7p that is essential for the initiation of rDNA transcription by yeast RNA polymerase I. J Biol Chem 271(35):21062-7

Reference Help

Abstract


A new gene, RRN11, has been defined by certain rrn mutants of Saccharomyces cerevisiae which are defective specifically in the transcription of 35 S rRNA gene by RNA polymerase I (pol I). We have cloned the gene and found that it encodes a protein of 507 amino acids. We have used a strain with the chromosomal RRN11 deleted and carrying HA1 epitope-tagged RRN11 on a plasmid to isolate a protein complex containing the protein encoded by RRN11. This protein complex complemented rrn6 mutant extracts, which were previously shown to be deficient in the essential pol I transcription factor called Rrn6/7 complex or core factor (CF). The CF complex was previously shown to consist of three proteins, the 102- and 60-kDa subunits encoded by RRN6 and RRN7, respectively, and the 66-kDa subunit. The results of the above complementation experiments combined with mobility of Rrn11p in SDS-polyacrylamide gel electrophoresis analysis relative to Rrn6p and Rrn7p led to the conclusion that RRN11 encodes the 66-kDa subunit of CF. Glutathione S-transferase-Rrn11p fusion protein was found to bind strongly to 35S-labeled Rrn6p and Rrn7p but only weakly to 35S-labeled TATA-binding protein. Similarly, glutathione S-transferase-Rrn7p fusion protein bound strongly to 35S-labeled Rrn6p and Rrn11p but only weakly to 35S-labeled TATA-binding protein. These results are consistent with the fact that one can purify CF consisting of Rrn6p, Rrn7p, and Rrn11p from yeast cell extracts, but the purified complex does not contain TATA-binding protein. RRN11 was shown to be an essential gene, and [3H]uridine pulse experiments demonstrated directly that RRN11 is essential for rDNA transcription by pol I in vivo. Thus all three subunits of CF are essential for rDNA transcription. Because of the resemblance of CF to mammalian essential pol I transcription factor SL1, the amino acid sequences of Rrn11p and the other two subunits of CF were compared with those of the three TATA-binding protein-associated factors (TAFs) in the human SL1, TAFI48, TAFI63, and TAFI110. No significant similarity was detected between two sets of the proteins. Similarity as well as differences between CF and SL1 are discussed.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Lalo D, Steffan JS, Dodd JA, Nomura M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference