Reference: Girard PM and Boiteux S (1997) Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. Biochimie 79(9-10):559-66

Reference Help

Abstract


An essential requirement for all organisms is to maintain its genomic integrity. Failure to do so, in multicellular organisms such as man, can lead to degenerative pathologies such as cancer and aging. Indeed, a very low spontaneous mutation rate is observed in eukaryotes, suggesting either an inherent stability of the genome or efficient DNA repair mechanisms. In fact, DNA is subjected to unceasing attacks by a variety of endogenous and environmental reactive chemical species yielding a multiplicity of DNA damage, the deleterious action of which is counteracted by efficient repair enzymes. Reactive oxygen species formed in cell as by-products of normal metabolism are probably the major source of endogenous DNA damage. Amongst oxidative damage, base modifications constitute an important class of lesions whose lethal or mutagenic action has been established. Oxidatively damaged DNA bases are mostly repaired by the base excision repair pathway (BER) in prokaryotes and eukaryotes. However, the nucleotide excision repair pathway (NER) may also play a role in the repair of some oxidized bases in DNA. Here, we describe repair pathways implicated in the removal of oxidized bases in Saccharomyces cerevisiae. Yeast is a simple organism that can be used as a paradigm for DNA repair in all eukaryotic cells. S cerevisiae possesses three DNA glycosylases that catalyze the excision of oxidized bases from damaged DNA: the Ogg1, Ntg1 and Ntg2 proteins. The aim of this review is to summarize recent findings dealing with the formation, the biological consequences and the repair of oxidized DNA bases in S cerevisiae.

Reference Type
Journal Article | Review
Authors
Girard PM, Boiteux S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference