Reference: Rambourg A, et al. (1996) Transformations of membrane-bound organelles in sec 14 mutants of the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Anat Rec 245(3):447-58

Reference Help

Abstract


Background: In early descriptions of ultrastructural alterations of secretory (sec) mutants of the yeast Saccharomyces cerevisiae, two mutants, sec7 and sec14, were shown to produce cell structures, the so-called Berkeley bodies thought at first to correspond to Golgi structures. In sec7 mutants grown at restrictive temperature, secretion granules soon dis-appeared, whereas networks of Golgi tubules increased in size and transformed into stacks of seven to eight flattened elements. At these time intervals, structures resembling Berkeley bodies appeared to be extensions of the endoplasmic reticulum (Rambourg et al., 1993). It is the purpose of the present study to examine by electron microscopy S. cerevisiae sec14 mutants and to compare the modifications along their secretory pathway with those occurring in a homologous mutant of Yarrowia lipolytica.

Methods: S. cerevisiae sec 14 mutant cells coming from exponentially growing cultures were examined either at 24 degrees C or after shifting at 37 degrees C for 0, 2, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min. Y. lipolytica mutant cells were first cultured in YNB in 5000 medium and then transferred for 0, 6, 8, 12, 20, and 24 hr, in a phosphate-buffered YPD medium, which allows wild cells to differentiate from yeast to mycelian form. In both cases, cells were fixed in 2% glutaraldehyde, treated for 15 min in 1% sodium metaperiodate, post-fixed in reduced osmium, and embedded in Epon. To visualize the three-dimensional configuration of cell organelles, stereopairs were prepared from section stained with lead citrate and tilted at +/- 15 degrees from the 0 degree position of the goniometric stage of the electron microscope.

Results: In S. cerevisiae mutant cells shifted for 2 min at the restrictive temperature, faintly stained networks of thin anastomosed tubules were located at close proximity and often continuous with faintly stained ER cisternae. More intensely stained tubular networks with nodular dilations having the size of secretion granules were dispersed throughout the cytoplasm. Later on, the faintly stained ER elements and related tubular networks decreased in number, whereas the intensely stained nodular tubular networks increased in frequency. The incidence of secretion granules also increased and were distributed at random throughout the cytoplasm. Widemeshed, intensely stained fenestrated spheres were often encountered and increased in number, in parallel to the increase in the number of nodular tubular networks. At late time intervals, the fenestrated spheres decreased in number as they seemingly transformed into spherical bodies identical to vacuoles. In contrast to what occurred in S. cerevisiae sec14 mutant, the main ultrastructural modification observed in Y. lipolytica transferred to the YPD medium was the formation of deep plasma membrane invaginations.

Conclusions: It appears that two functionally homologous PI/PC transfer proteins (Sec14psc and Sec14pyl) control distinct physiological processes in the two sec14 mutants examined. Such differences are perhaps related to the regulatory role of these proteins in different target organelles, i.e., the Golgi apparatus in S. cerevisiae or the plasma membrane in Y. lipolytica.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rambourg A, Clermont Y, Nicaud JM, Gaillardin C, Kepes F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference