Reference: Hawkes TR, et al. (1995) Purification and characterization of the imidazoleglycerol-phosphate dehydratase of Saccharomyces cerevisiae from recombinant Escherichia coli. Biochem J 306 ( Pt 2)(Pt 2):385-97

Reference Help

Abstract


The HIS3+ gene of Saccharomyces cerevisiae was overexpressed in Escherichia coli and the recombinant imidazoleglycerol-phosphate dehydratase (IGPD) purified to homogeneity. Laser-desorption and electrospray m.s. indicated a molecular ion within 2 units of that expected (23833.3) on the basis of the protein sequence, with about half of the polypeptide lacking the N-terminal formylmethionine residue. IGPD initially purified as an apoprotein was catalytically inactive and mainly a trimer of M(r) 70,000. Addition of Mn2+ (but not Mg2+) caused this to assemble to an active (40 units/mg) enzyme (Mn-IGPD) comprising of 24 subunits (M(r) 573,000) and containing 1.35 +/- 0.1 Mn atoms/polypeptide subunit. An enzyme with an identical activity and metal content was also obtained when the fermenter growth medium of recombinant Escherichia coli was supplemented with MnCl2, and IGPD was purified through as Mn-IGPD rather than as the apoenzyme and assembled in vitro. Inhibition by EDTA indicated that the intrinsic Mn2+ was essential for activity. The retention of activity over time after dilution to very low concentrations of enzyme (< 20 nM) indicated that the metal remained in tight association with the protein. A novel continuous assay method was developed to facilitate the kinetic characterization of Mn-IGPD. At pH 7.0, the Km for IGP was 0.10 +/- 0.02 mM and the Ki value for inhibition by 1,2,4-triazole, 0.12 +/- 0.02 mM. In contrast with other reports, thiols had no influence on catalytic activity. The activity of Mn-IGPD varied with enzyme concentration in such a way as to suggest that it dissociates to a less active form at very low concentrations. Significant inhibition by the product, imidazole acetol phosphate, was inferred from the shape of the progress curve. Titration with, the potent competitive inhibitor, 2-hydroxy-3-(1,2,4-triazol-1-yl)propyl phosphonate indicated that Mn-IGPD contained 0.9 +/- 0.1 catalytic sites/protomer. The activity nearly doubled in the presence of high concentrations of Mn2+; the apparent Ks for stimulation was 20 microM. The basis of this effect was obscure, since there was no corresponding increase in the titre of active sites. Neither was there a discernable shift in the values of Km or Ki (above), although exogenous Mn2+ did reduce the optimum pH for kcat, from 7.2 to 6.8. On the basis of a single site/subunit, the maximum rate of catalytic turnover at 30 degrees C was 32 s-1.

Reference Type
Journal Article
Authors
Hawkes TR, Thomas PG, Edwards LS, Rayner SJ, Wilkinson KW, Rice DW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference