Reference: Lee SM and Park JW (1998) Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Arch Biochem Biophys 359(1):99-106

Reference Help

Abstract


A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing oxidation system but not against an oxidation system without thiol. This 25-kDa protein acts as a peroxidase but requires a NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was thus named thioredoxin peroxidase (TPx). The protective role of TPx in the cellular defense against heat shock (42 or 48 degreesC), which may increase oxidative stress in cells sufficiently to form reactive oxygen species harmful to cellular function, was investigated in a wild-type and a mutant yeast strain in which the tsa gene that encodes TPx was disrupted by homologous recombination. Upon exposure under aerobic conditions to heat shock there was a distinct difference between these two strains in growth kinetics and viability. The wild-type strain was more resistant to killing by heat than the mutant strain. In addition, the expression of the tsa gene in Escherichia coli caused an increase in thermotolerance. The expression of the tsa gene increased under heat shock; however, modulation of activities of other antioxidant enzymes, such as catalase, superoxide dismutase, glucose 6-phosphate dehydrogenase, and glutathione reductase as well as the total glutathione level, remained unaltered in both strains under heat shock. The induction of heat shock protein HSP104 was not significantly different in the two strains under heat shock. The results indicate that the lack of TPx expression may be solely responsible for the thermosensitive phenotype of tsa mutant cells. When the oxidation of 2', 7'-dichlorofluorescin was used to examine hydroperoxide production in yeast cells, tsa mutant cells showed a 2.5- to 3.5-fold increase in fluorescence upon exposure to heat stress compared to wild-type cells. The antioxidant, N-acetylcysteine, prevented intracellular peroxide formation in response to heat shock. The carbonyl content of extract, the indicative marker of oxidative damage to protein, from tsa mutant cells was higher than that from wild-type cells. These results suggest that TPx may play a direct role in cellular defense against heat shock, presumably functioning as an antioxidant protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lee SM, Park JW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference