Reference: Zecherle GN, et al. (1996) Purines are required at the 5' ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol Cell Biol 16(10):5801-10

Reference Help

Abstract


We have made specific alterations in the CAACAA element at the transcription start site of a Saccharomyces cerevisiae suppressor tRNA gene. The mutant genes were tested for their ability to suppress the ochre nonsense alleles ade2-1, lys4-1, and met4-1. Many of the mutants showed either no phenotypic change or a weak loss of suppression relative to that of SUP4-o. A 2-bp change, CTCCAA, which alters bases encoding the +1 and +2 nucleotides of pre-tRNA Tyr, had a strong deleterious effect in vivo, as did the more extensive change CTCCTC. In contrast, mutant genes bearing each of the possible single changes at nucleotide +1 retained normal suppression levels. The transcription start point could be shifted in a limited fashion in response to the specific sequences encountered by RNA polymerase III at the start site. ATP was preferentially utilized as the 5' nucleotide in the growing RNA chain, while with start site sequences that precluded utilization of a purine, CTP was greatly preferred to UTP as the +1 nucleotide. Short oligopyrimidine RNAs formed on the CTCCTC allele could be repositioned in the active center of the newly formed ternary complex. Early postinitiation complexes containing short nascent RNAs formed on the CTCCTC mutant were more sensitive to the effects of heparin and produced more abortive transcripts than similar complexes formed on SUP4-o. Our results suggest that the purine-rich sequences at the 5' ends of the nascent transcripts of many genes act to stabilize the early ternary complex.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Zecherle GN, Whelen S, Hall BD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference