Reference: Ashby MN, et al. (1992) Endoproteolytic processing of a farnesylated peptide in vitro. Proc Natl Acad Sci U S A 89(10):4613-7

Reference Help

Abstract


Numerous eukaryotic proteins containing a carboxyl-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; X, any amino acid) require a three-step posttranslational processing for localization and function. The a mating factor of Saccharomyces cerevisiae is one such protein, requiring cysteine farnesylation, proteolysis of the terminal three amino acids, and carboxyl methylation for biological activity. We have used farnesylated a-factor peptides to examine the proteolytic step in the maturation of CAAX-containing proteins. Three distinct carboxyl-terminal protease activities were found in yeast cell extracts that could remove the terminal three residues of a-factor. Two of the proteolytic activities were in cytosolic fractions. One of these activities was a PEP4-dependent carboxypeptidase that was sensitive to phenylmethylsulfonyl fluoride. The other cytosolic activity was PEP4-independent, sensitive to 1,10-phenanthroline, and effectively inhibited by an unfarnesylated a-factor peptide. In contrast, a protease activity in membrane fractions was unaffected by phenylmethylsulfonyl fluoride, 1,10-phenanthroline, or unfarnesylated a-factor peptide. Incubation of membrane preparations from either yeast or rat liver with a radiolabeled farnesylated a-factor peptide released the terminal three amino acids intact as a tripeptide, indicating that this reaction occurred by an endoproteolytic mechanism and that the enzyme most likely possesses a broad substrate specificity. The yeast endoprotease was not significantly affected by a panel of protease inhibitors, suggesting that the enzyme is novel. Zinc ion was shown to inhibit the endoprotease (Ki less than 100 microM). The specific activities of the a-factor carboxyl-terminal membrane endoprotease and methyltransferase clearly indicated that the proteolytic reaction was not rate-limiting in these processing reactions in vitro.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Ashby MN, King DS, Rine J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference