Reference: Esposito MS (1984) Molecular mechanisms of recombination in Saccharomyces cerevisiae: testing mitotic and meiotic models by analysis of hypo-rec and hyper-rec mutations. Symp Soc Exp Biol 38:123-59

Reference Help

Abstract


Recombination in the yeast Saccharomyces cerevisiae has been the subject of extensive genetic studies documenting the general properties of intragenic and intergenic recombination and the differences between mitotic and meiotic gene conversion and reciprocal exchange. Spontaneous mitotic and meiotic events differ in the time of onset of recombination relative to chromosomal replication, symmetry versus asymmetry of putative heteroduplex DNA regions, polarity of conversion of intragenic markers, and the lengths of DNA segments that undergo coincident conversion. The differences observed and the properties of yeast rec mutations provide evidence for multiple modes or pathways of mitotic and meiotic recombination. Several molecular models of recombination have been proposed to account for the basic parameters of genetic recombination and the differences between mitotic and meiotic recombination. Since the models differ with respect to the partial reactions comprising recombination they predict the isolation of different classes of hypo-recombination and hyper-recombination rec mutants. We have isolated a broad spectrum of yeast REC gene mutations that includes both hyper-rec and hypo-rec mutants. Five phenotypic classes of rec variants have been identified based upon their effects on spontaneous mitotic gene conversion and intergenic recombination. Their characteristics demonstrate that mitotic gene conversion and intergenic recombination are under independent as well as coordinate genetic control. Four gene mutations affecting recombination rad50, rad52, rem1 and spo11 have been extensively examined in several laboratories and illustrate the information that can be obtained by characterization of double mutant strains, detailed genotypic analysis of recombinants, and studies of meiotic recombination in cells in which the reductional division of meiosis has been bypassed by the spo13 mutation.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Esposito MS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference