Reference: West MG, et al. (1993) Cloning and characterization of the Saccharomyces cerevisiae gene encoding NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase. J Biol Chem 268(1):153-60

Reference Help

Abstract


Saccharomyces cerevisiae possess a monofunctional, cytoplasmic NAD-dependent 5,10-methylenetetrahydrofolate (THF) dehydrogenase that converts 5,10-methylene-THF to 5,10-methenyl-THF (Barlowe, C. K., and Appling, D.R. (1990) Biochemistry 29, 7089-7094). We have now isolated the gene encoding this enzyme from a yeast genomic library using oligonucleotide probes based on internal peptide sequences from the purified protein. Nucleotide sequence analysis reveals a 320-amino acid open reading frame that contains both of the internal peptide sequences. The predicted molecular weight (36,236) is consistent with the estimated size (33,000-38,000) of the purified protein. Disruption of the chromosomal copy of the gene resulted in loss of NAD-dependent 5,10-methylene-THF dehydrogenase activity and led to a purine requirement in certain genetic backgrounds, confirming a role for this enzyme in the oxidation of cytoplasmic one-carbon units. A single gene was mapped to chromosome XI by hybridization to a yeast chromosomal blot. We propose MTD1 as the name for this gene. Northern analysis of total yeast RNA revealed a single transcript of approximately 1,100 nucleotides. Multiple transcription initiation sites were identified between 58 and 83 base pairs upstream of the start of translation. The amino acid sequences derived from the nucleic acid sequences of seven other methylene-THF dehydrogenases cloned to date have been found to be highly homologous. Although the predicted amino acid sequence of the yeast NAD-dependent enzyme shows slight homology to the other sequences, it appears to be only distantly related to the other 5,10-methylene-THF dehydrogenases.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
West MG, Barlowe CK, Appling DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference